Calving rates at tidewater glaciers vary strongly with ocean temperature

نویسندگان

  • Adrian Luckman
  • Douglas I Benn
  • Finlo Cottier
  • Suzanne Bevan
  • Frank Nilsen
  • Mark Inall
چکیده

Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery

Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting,...

متن کامل

Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010)

The rate of mass loss from the Greenland ice sheet has increased over the past decade due, in large part, to changes in marine-terminating outlet glacier dynamics. These changes are attributed to increased submarine melt rates of floating ice tongues and submerged calving faces resulting from increased coastal ocean heat transport. We use remotely sensed data to calculate submarine melt rates f...

متن کامل

Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA

Both lake-calving Yakutat Glacier (337 km2), Alaska, USA, and its parent icefield (810 km2) are experiencing strong thinning, and under current climate conditions will eventually disappear. Comparison of digital elevation models shows that Yakutat Glacier thinned at area-averaged rates of 4.76 0.06mw.e. a (2000–07) and 3.66 0.03mw.e. a (2007–10). Simultaneously, adjacent Yakutat Icefield land-t...

متن کامل

Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA

Mendenhall Glacier is a lake-calving glacier in southeastern Alaska, USA, that is experiencing substantial thinning and increasingly rapid recession. Long-term mass wastage linked to climatic trends is responsible for thinning of the lower glacier and leaving the terminus vulnerable to buoyancy-driven calving and accelerated retreat. Bedrock topography has played a major role in stabilizing the...

متن کامل

Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise

[1] The digital elevation model (DEM) from the 2000 Shuttle Radar Topography Mission (SRTM) was differenced from a composite DEM based on air photos dating from 1948 to 1987 to determine glacier volume changes in southeast Alaska and adjoining Canada. SRTM accuracy was assessed at ±5 m through comparison with airborne laser altimetry and control locations measured with GPS. Glacier surface elev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015